Gene Expression Based Leukemia Sub-Classification Using Committee Neural Networks

نویسندگان

  • Mihir S. Sewak
  • Narender P. Reddy
  • Zhong-Hui Duan
چکیده

Analysis of gene expression data provides an objective and efficient technique for sub-classification of leukemia. The purpose of the present study was to design a committee neural networks based classification systems to subcategorize leukemia gene expression data. In the study, a binary classification system was considered to differentiate acute lymphoblastic leukemia from acute myeloid leukemia. A ternary classification system which classifies leukemia expression data into three subclasses including B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia and acute myeloid leukemia was also developed. In each classification system gene expression profiles of leukemia patients were first subjected to a sequence of simple preprocessing steps. This resulted in filtering out approximately 95 percent of the non-informative genes. The remaining 5 percent of the informative genes were used to train a set of artificial neural networks with different parameters and architectures. The networks that gave the best results during initial testing were recruited into a committee. The committee decision was by majority voting. The committee neural network system was later evaluated using data not used in training. The binary classification system classified microarray gene expression profiles into two categories with 100 percent accuracy and the ternary system correctly predicted the three subclasses of leukemia in over 97 percent of the cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

Application of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images

Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...

متن کامل

Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods

Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...

متن کامل

Facial expression (mood) recognition from facial images using committee neural networks

BACKGROUND Facial expressions are important in facilitating human communication and interactions. Also, they are used as an important tool in behavioural studies and in medical rehabilitation. Facial image based mood detection techniques may provide a fast and practical approach for non-invasive mood detection. The purpose of the present study was to develop an intelligent system for facial ima...

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009